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Domain walls in two-component dynamical lattices
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We introduce domain-wall~DW! states in the bimodal discrete nonlinear Schro¨dinger equation, in which the
modes are coupled by cross-phase modulation~XPM!. The results apply to an array of nonlinear optical
waveguides carrying two different polarizations of light, or two different wavelengths, with anomalous intrin-
sic diffraction controlled by direction of the light beam, and to a string of drops of a binary Bose-Einstein
condensate, trapped in an optical lattice. By means of continuation from various initial patterns taken in the
anticontinuum~AC! limit, we find a number of different solutions of the DW type, for which different stability
scenarios are identified. In the case of strong-XPM coupling, DW configurations contain a single mode at each
end of the chain. The most fundamental solution of this type is found to be always stable. Another solution,
which is generated by a different AC pattern, demonstrates behavior which is unusual for nonlinear dynamical
lattices: it is unstable for small values of the coupling constantC ~which measures the ratio of the nonlinearity
and coupling lengths!, and becomes stable at largerC. Stable bound states of DWs are also found. DW
configurations generated by more sophisticated AC patterns are identified as well, but they are either com-
pletely unstable, or are stable only at small values ofC. In the case of weak XPM, a natural DW solution is the
one which contains a combination of both polarizations, with the phase difference between them 0 andp at the
opposite ends of the lattice. This solution is unstable at all values ofC, but the instability is very weak for large
C, indicating stabilization as the continuum limit is approached. The stability of DWs is also verified by direct
simulations, and the evolution of unstable DWs is simulated too; in particular, it is found that, in the weak-
XPM system, the instability may give rise to a moving DW. The DW states can be observed experimentally in
the same parameter range where discrete solitons have been found in the lattice setting.

DOI: 10.1103/PhysRevE.67.036614 PACS number~s!: 42.81.2i, 63.20.Pw
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I. INTRODUCTION

Nonlinear optical fibers and waveguides and arrays co
posed of them furnish a unique example of a medium
which various solitary-wave patterns and their comple
can be easily observed in a real experiment, and descri
with a very high accuracy, by relatively simple models,
benchmark example being the nonlinear Schro¨dinger equa-
tion @1#. Besides commonly known bright and dark soliton
solitary-wave structures in the form of domain walls~DWs!
were also predicted in a fiber with normal group-veloc
dispersion~GVD! which carries two different waves with
orthogonal polarizations, circular or linear, that intera
through the cross-phase modulation~XPM! induced by the
Kerr nonlinearity @2,3#. Similar structures can also be e
pected to exist in planar nonlinear optical waveguides@4#.
DW patterns are distinguished by the property that, asym
totically ~at infinity!, they contain a single polarization, wit
a switch between two of them in a localized region. In fa
solutions for the optical DWs were constructed, followin
the pattern of earlier known solutions of the DW type for
system of coupled Ginzburg-Landau equations that desc
interactions between roll patterns with different orientatio
in a convection layer@5,6#.

GVD in the fiber must be normal in order to prevent t
modulational instability~MI ! of the DW’s uniform back-
ground fields. Nevertheless, it is known that a uniform tw
component field, unlike single-component ones, may be s
1063-651X/2003/67~3!/036614~9!/$20.00 67 0366
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ject to MI even in the case of normal GVD@1#. Loosely,
DWs are related to the MI of the two-component unifor
state the same way as the usual bright soliton is related to
of the single-component field in the case of anomalous G
@4#.

The same model~which is presented in detail below! ap-
plies to an altogether different physical system, namely
string of drops of a binary~two-component! Bose-Einstein
condensate~BEC! trapped at minima of a periodic potentia
which can be readily induced by an optical interference p
tern @7#. In this connection, it is relevant to mention th
stable DW configurations have been predicted in a conti
ous quasi-one-dimensional~cigar-shaped! binary BEC@8#.

Optical DWs in nonlinear fibers have been observed
direct experiments@9#, including high-repetition periodic
DW trains @10#. On the other hand, recent experimen
achievements in the observation of discrete spatial opt
solitons in arrays of waveguides in the spatial dom
@11,12# suggest that observation of DW-like structures
waveguide arrays may be quite feasible too. Additiona
solitons of the DW type may be a new species of solita
waves in the discrete nonlinear Schro¨dinger ~DNLS! equa-
tions, which have recently attracted a great deal of inte
~for a recent review see e.g., Ref.@13#!. Given that the solu-
tions to coupled DNLS equations have been examined fo
considerable while now~the first relevant results appeare
about 20 years ago in@14#!, it appears that DWs may be on
of the few types of DNLS solitions that have not been stu
ied yet.
©2003 The American Physical Society14-1
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An objective of the present work is to introduce this ty
of discrete solitons and study their stability by means
precise numerical methods. An exact formulation of t
model, together with estimates of relevant physical para
eters, are given in Sec. II. In Sec. III, we study in detail DW
in the case of strong XPM, which corresponds to circu
polarizations. We find several different types of DWs, t
simplest one being stable for all values of the intersite c
pling constantC ~which is the ratio of the propagation leng
determined by the Kerr nonlinearity to the linear-coupli
length, in terms of the optical-waveguide array!. DWs of a
different type exhibit a rather unusual stability behavior, b
ing unstable at small values ofC, and stable at largerC, i.e.,
in weakly and strongly coupled arrays, respectively. The
istence of stable bound states of DWs is also demonstra
Other types of DWs turn out to be either completely u
stable, or stable only at small values ofC. In Sec. IV, we
consider DWs in the model with weak XPM, which corr
sponds to linear polarizations. In this case, DWs are
stable. However, the instability growth rate of the simpl
~fundamental! DW becomes vanishingly small for large va
ues ofC, so that the pattern becomes~marginally! stable in
the continuum limit,C→`. In all the cases, the predicte
stability of DWs is tested in direct numerical simulation
and in those cases when DWs are expected to be unst
the instability development is simulated too. Section V su
marizes the paper.

II. FORMULATION OF THE MODEL

The model of an array of nonlinear optical fibers carryi
fieldsfn(z) andcn(z), which correspond to two orthogona
polarizations of light, has the form

i
d

dz
~cn!5C~cn111cn2122cn!2~ ucnu21bufnu2!cn ,

~1!

i
d

dz
~fn!5C~fn111fn2122fn!2~ ufnu21bucnu2!fn ,

~2!

wherez is the propagation distance along the fiber andn is
the index of the lattice site. Equations~1! and~2! are written
in a rescaled form, in which the constantC of the linear
coupling between adjacent fibers has a straightforward ph
cal meaning: it is a ratio of the characteristic propagat
length Lnonlin along the waveguide, determined by the Ke
nonlinearity ~self-phase modulation, SPM!, to the coupling
length Lcoupl determined by the linear interaction betwe
adjacent waveguides. In the most typical experimental si
tion, with the power of light beams 50021000 W, the non-
linearity length in AlxGa12xAs waveguides~whose nonlin-
earity is 500 times stronger than that of fused silica gla!
takes values;122 mm, and the coupling length is;1 mm
@11,12#. In fact, Lcoupl may vary in broad limits, as it expo
nentially depends on the separationh between the
waveguides: for instance,Lcoupl decreases by a factor of 1.
ash increases from 9mm to 11mm @11#. Results displayed
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below ~such as a width of DWs in terms of the number
lattice sites! suggest that stable DWs in optical-wavegui
arrays should be observable in the same experimental se
and in essentially the same range of the power per wa
guide, where bright discrete solitons have been found
works @11,12#.

In Eqs.~1! and ~2!, the SPM coefficient is normalized t
be 1, andb is a relative coefficient of the XPM nonlinea
coupling, which is 2 or 2/3, in the case of linear or circul
polarizations, respectively. In the latter case, we neglect
usual, four-wave-mixing~FWM! non-linear-coupling terms
@1#. Strictly speaking, for the short propagation distanc
(;10 mm), relevant to the recent experiments@11#, it may
be necessary to keep the FWM terms in the caseb52/3; we
do not consider this issue in the present work because,
will be shown below, most interesting results are found in
caseb52. We will refer to the two cases withb52/3 and
b52 as those with the weak- and strong-XPM couplin
respectively. The valueb52 applies also to the case whe
the two modes refer not to polarizations, but rather to lig
signals carried by different wavelengths@1#, which is another
plausible realization of the present model in terms of non
ear optics.

If the nonlinearity in the waveguides is induced by t
usual self-focusing Kerr effect, and the light is launched
that its Poynting vector is oriented parallel to the array,
linear coupling between fibers~discrete diffraction! corre-
sponds toC,0 in Eqs.~1! and ~2!. In this case, the system
gives rise to two-component discrete bright solitons, wh
were recently studied in detail, including their generalizati
to the two-dimensional lattice@15#. However, a newly devel-
oped experimental technique, based on launching an obl
beam into the array@12#, makes it possible to implemen
anomalousdiscrete diffraction, which corresponds toC.0
in Eqs.~1! and~2!. In this case, bright solitons do not exis

As it was mentioned above, the same system of Eqs.~1!
and ~2! may also be regarded as a normalized model o
string of binary-BEC drops trapped in an optical lattice.
this case, assuming the usual situation with the positive s
tering length~i.e., repulsion between atoms!, one hasC.0,
which is precisely what is necessary to generate DW so
tions. Unlike the realization in terms of nonlinear optics, t
value of the coefficientb may be arbitrary~but positive!.
The separation between the drops is of the order of
lattice-generating light wavelength, i.e.,;1 mm. A promis-
ing candidate for the binary condensate is a mixture of85Rb
and 87Rb, the corresponding positive scattering lengths
ing ;10 nm @16#. The necessary temperature and densi
of the drops can be estimated as 1025–1026 K and
1011–1012 cm23, which can be readily achieved by availab
experimental techniques.

In this work, we examine discrete domain walls~DWs! in
systems~1! and ~2!, which may be stable only ifC.0. We
will construct DW solutions, starting from the anticontinuu
~AC! limit with C50 @17#, and using the continuation inC
to extend the solutions up to bifurcation points where th
lose their stability, or up to the continuum limit (C→`)
when possible. Thus, we seek solutions of the form
4-2
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DOMAIN WALLS IN TWO-COMPONENT DYNAMICAL LATTICES PHYSICAL REVIEW E 67, 036614 ~2003!
cn5exp~ iLz!un , ~3!

fn5exp~ iLz!vn , ~4!

arriving at the stationary equations

F~un ,vn![2CD2un1~ uunu21buvnu2!un2Lun50,
~5!

G~un ,vn![2CD2vn1~ uvnu21buunu2!vn2Lvn50.
~6!

Once a solution to Eqs.~5! and~6! has been found~by means
of a Newton-type numerical method!, we perform the linear
stability analysis around it, looking for perturbed solutions
@18#

cn5exp~ iLz!@un1ean exp~ ivz!1ebn exp~2 iv!z!#,
~7!

fn5exp~ iLz!@vn1ecn exp~ ivz!1dn exp~2 iv!z!#
~8!

~the asterisk stands for the complex conjugation!, and solv-
ing the ensuing matrix eigenvalue problem.

III. NUMERICAL RESULTS FOR THE STRONG-XPM
MODEL

In this section, we consider the model based on Eqs.~1!
and ~2! with b52. We start the examination of DW struc
tures by looking for stationary solutions in a natural for
which is taken, in the AC limit, as

un5~ . . . 0,0,0,V1,1,1,1, . . . !,

vn5~ . . . 1,1,1,V2,0,0,0, . . . ! ~9!

@see Eqs.~3! and~4!#, whereV1 andV2 belong to one~cen-
tral! site of the lattice and will be defined below. We will, i
particular, consider the steady states withL51 in Eqs.~3!
and ~4!, but the results will be generally true if 1 in the A
ansatz~9! is replaced byAL for an arbitrary positive value
of L. Notice that in the present study, we fixL and varyC,
modifying, essentially, in this way the degree of localizati
or equivalently the peak power. One can instead always
cale C to the valueC51, and equivalently vary the propa
gation constantL.

Numerical calculations demonstrate that, forb52 ~which
corresponds to the circular polarizations of light in the
bers!, the AC pattern~9! with

V151, V250 ~10!

~or vice versa! generates the most structurally robust a
stable solutions. In particular, this solution was found to
stable forall values of the coupling constantC, up to the
continuum limitC→`. Examples of such a DW for cases
weak (C50.034) and strong (C53.5) intersite coupling~re-
call C may be realized as the ratioLnonlin/Lcoupl in the
optical-waveguide array! are shown in Fig. 1. The complet
stability of DWs belonging to this branch of the solutions h
03661
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also been verified by direct numerical simulations of Eqs.~1!
and~2!, with initial conditions containing a small noisy com
ponent.

The next case to consider is when

V15V25AL/~11b! ~11!

in Eq. ~9!. These values imply that, in the AC limit, th
central waveguide in the array carries a vectorial state
which both polarities have equal amplitudes. The numer
investigation reveals an unusual feature of this solut
branch: it is unstable for small values ofC, starting from the
AC limit ( C50), but becomesstableat C50.61, and re-
mains stable thereafter up toC5`. This property is opposite
to the common scenario, when a sufficiently strong discre
ness is responsible~through the effective potential energ
barrier that it creates! for the stabilization of various solitary
wave lattice patterns~for instance, two-dimensional pulse
@19# or vortices @20#! that are unstable in the continuum
limit.

Solutions generated by Eq.~11! are shown, for the same
values ofb, L, andC as in Fig. 1, in two upper rows of Fig
2 ~top panel!. Notice the presence of an unstable~imaginary!
eigenvalue pair in the panel pertaining toC50.034. The
imaginary part of the unstable eigenvalue is displayed, a
function of the coupling constant, in the lower panel of F
2, showing the transition from instability to stability atC
'0.61.

The predictions for the stability of these solutions we
also checked against direct simulations of the full equatio

FIG. 1. Left panels show examples of the domain-wall solutio
generated, in the caseb52 andL51, by the AC pattern withun

5(0, . . .,0,1,1, . . . ,1) ~the dashed line connecting the stars is
guide to the eye! and vn5(1, . . .,1,0,0, . . . ,0) ~circles connected
by the solid line!. Right panels show the spectral plane (v r ,v i) of
the corresponding stability eigenfrequencies found from the eq
tions linearized about the stationary solution, the subscripts sta
ing for the real and imaginary parts. The absence of eigenfrequ
cies with a nonzero imaginary part indicates the stability of
configuration. The top and bottom panels correspond, respectiv
to C50.034~weak coupling! andC53.5 ~strong coupling!.
4-3
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In the case when the DW is predicted to be stable, i
indeed found to be completely stable~not shown here!. In the
case when it is expected to be unstable, the simulations s
~see Fig. 3! that the unstable DW emits a packet of latti
phonons and rearranges itself, so that the field in one c
ponent at one site (n550 in Fig. 3! becomes equal to th
field in the other component at the adjacent site (n551, in
Fig. 3!. Comparison with expressions~9! and ~10! clearly
suggests that the result of the instability development is
rearrangement of the DW into a stable one belonging to
solution branch generated by Eq.~10! in the AC limit.

A solution generated by AC pattern~9! with V15V250
~i.e., with both field components equal to zero at the cen
lattice site in the AC limit! was also examined. Unlike th
solution branches considered above, this one does not r
the continuum limit. Instead, it terminates atC50.15 143
through a turning-point bifurcation. This is obvious in Fig.
which displays theL2 norm of one component of the solutio
~the other component behaves similarly!,

FIG. 2. The two top rows show DW solutions and their stabil
eigenvalues, as generated by AC pattern~9! at the same values o
parameters as in Fig. 1, but withV1 andV2 chosen as in Eq.~11!.
The bottom panel shows the imaginary part of the most unst
eigenvalue as a function ofC.
03661
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vs the coupling constantC ~note thatP is finite due to the
finiteness of the computational domain!. The dependence
P(C), shown in Fig. 4, is not a completely invariant chara
teristic, as values ofP depend on the size of the domai
However, the turning-point structure is invariant.

In the lower panel of Fig. 4, the present solution and
linear-stability eigenvalues are shown for three different v
ues of C (C50.06, C50.11, andC50.15 143 in the top,
middle, and bottom subplots!. As is seen from this part of the
figure, the first solution is stable, while the latter two are n
The solutions of the present type are stable forC,0.0725,
and the spectrum of their linear-stability eigenvalues c
tains two continuous bands. AsC increases, two pairs o
eigenvalues bifurcate from the outer band and move towa
the inner one. Their first collision with the inner band occu
at C'0.0725, and the second collision takes place atC
'0.08. Each collision generates an instability-bearing qu
tet of eigenvalues, manifesting the so-called Hamilton
Hopf bifurcation@21#. Subsequently~for largerC), the two
quartets move towards the imaginary eigenvalue axis. V
close to the turning point, the collision of the first quart
with the axis induces a symmetry breaking, which results
one pair of eigenvalues moving towards the origin, wh
another pair moves upwards along the imaginary axis.
nally, after the collapse of the lower imaginary pair onto t
origin of the spectral plane, the turning-point bifurcation o
curs and the branch terminates, as is shown in the up
panel of Fig. 4.

Direct simulations again show that the solutions which
stable according to the linearization are indeed stable in

le

FIG. 3. Evolution of an unstable DW configuration belonging
the solution branch generated by AC ansatz~9! and ~11! with C
50.1, b52, andL51. To accelerate the onset of the instability,
noise with an amplitude 1024 was added to the initial configuration
The left and right top panels display the evolution of the fieldsuvnu
anduunu, while the bottom panels show the evolution of the fields
the sitesn550 ~solid curve! and n549 ~dashed curve! for u, and
n550 ~solid curve! andn551 ~dashed! for v.
4-4
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simulations. An example of direct simulations of the unsta
solution belonging to this branch is given in Fig.~5!. As is
seen, the instability does set in, but its growth is extrem
slow.

We also considered the situation with the zero-field st
occupying, in the AC limit,two ~or more! lattice sites. The
resulting scenario turns out to be similar to that demonstra
above for the patterns generated by AC limit~9! with V1
5V250: the solution is stable at very smallC, then be-
comes unstable due to the bifurcation of four~instead of two
in the previous case! pairs of eigenvalues from the oute
band and their collision with the inner band~not shown
here!. Finally, the branch terminates at a turning point atC

FIG. 4. The upper panel demonstrates the result of continua
of the branch withV15V250 from the AC limit up to the turning
point (C'0.15143)—the solid curve—and back—the dashed o
To this end, theL2 norm P @see Eq.~12!# of one component~the
other behaves similarly! of the solution is shown as a function o
the coupling constantC. The lower panel shows solutions at thre
points along the solid line in the upper panel. In particular,
stable solution forC50.06 ~its spatial profile and stability! is
shown in the top subplot, and solutions forC'0.11 and C
'0.151 42~the latter one being very close to the turning point! are
displayed in the middle and bottom subplots.
03661
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'0.17, similarly to what was shown in Fig. 4. Note that th
turning point is found at a larger value ofC than in Fig. 4.
We continued the analysis, starting with several empty~zero-
field! sites in the center of the pattern atC50, which pro-
duced quite a similar picture, an unexpected feature be
that the value ofC at the turning point increases with th
increase of the number of the initially empty sites.

Contrary to what was described above for the case of
or several empty sites, in the case when the initial pattern
two sites occupied by vectorial state~11!, the solution be-
haves quite differently from its counterpart in the case wh
only one site was initially occupied by the vectorial state.
fact, not only does the branch terminate—in this case, aC
'0.1085 ~the solution found at the turning point and th
corresponding eigenfrequencies are shown in Fig. 6!—but it

n

.

e

FIG. 5. The evolution of a weakly unstable solution generat
in the AC limit, by ansatz~9! with V15V250, for C50.1, b52,
L51. The development of the instability is initiated by addin
noise with an initial amplitude 1023. The meaning of the panels i
the same as in Fig. 3.

FIG. 6. The solution generated, in the AC limit, by the patte
with two sites occupied by vectorial state~11! is shown exactly at
the turning point ofC'0.1085, along with its stability eigenvalues
This solution branch is always unstable, as discussed in the te
4-5
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is also found to bealways unstable: for every value ofC
starting from the AC limitC50, there are two imaginary
eigenvalue pairs. The branch terminates when one of th
passes through the origin.

An example of directly simulated evolution of an unstab
DW of this type is shown in Fig. 7. In this case, the ins
bility development is essentially faster than in the ca
shown in Fig. 3, and, as a result, a stable DW appears.

Furthermore, stable DW solutions found above, such
those generated by AC-limit pattern~9! with V1 andV2 cho-
sen as per Eqs.~10! or ~11!, can form stable complexes
~higher-order DWs!. Obviously, the complex must contain a
odd number of fundamental DWs. An example is shown
Fig. 8 for C50.15. Direct simulations confirm that thes
complexes are completely stable. Recall that, if the unde
ing system of Eqs.~1! and~2! is applied to the string of BEC
drops, the value ofb, which is determined by the values o
the cross-scattering length, is arbitrary. In the case ofb.1,
the results are quite similar to those described in detail ab
for b52. For b,1, the results are very different, as is d
scribed in the following section.

IV. THE WEAK-XPM MODEL

The underlying pattern~9!, used to construct all the DW
states considered above, was suggested by solutions f
~in the temporal, rather than spatial, domain! in the con-
tinuum model of the single nonlinear optical fiber@3,4# or
cigar-shaped BEC@8#. Solutions of this type in the con
tinuum model exist only in the case of sufficiently stro
XPM, namely, forb.1.

Unlike the continuum model, in the discrete systems~1!
and ~2!, DW patterns of type~9! can also be found forb

FIG. 7. The evolution of an unstable solution generated, in
AC limit, by ansatz~9! with two sites occupied by vectorial stat
~11!, for C50.1, b52, L51. The development of the instability i
initiated by adding noise with an initial amplitude 1024. The mean-
ing of the panels is the same as in Fig. 3, the bottom ones sho
~absolute value of! the field evolution at the pointsn548 ~dash-
dotted lines!, n549 ~dashed lines!, n550 ~solid lines!, andn551
~dotted lines! for u ~bottom left! andv ~bottom right! as a function
of time t.
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,1 ~weak-XPM coupling!, including the caseb52/3, which
is specially relevant for the applications to nonlinear opti
However, in this case properties of the DW solutions a
drastically different from those described above forb52.

For b52/3, all solutions of the DW type were observe
to becomestaggeredwhen continued from the AC limit~i.e.,
the phase difference between the fields at adjacent site
the lattice tends to bep, rather than 0). As a result, the oute
continuous band of the stability eigenvalues has the Kr
signature@22# opposite to that of the inner band, and as so
as the bands collide~which happens atC'0.011, i.e., still in
the case of very weak coupling!, numerous quartets of com
plex eigenvalues arise. An example, corresponding to
solution generated by AC pattern~9! with the central site
occupied by the vectorial state~11! ~with b52/3) is dis-
played in Fig. 9. Similar results were obtained for the so

e

ng

FIG. 8. An example of a stable complex consisting of thr
domain walls forC50.15. Shown are the solution’s spatial profi
~top panel! and stability eigenvalues~in the bottom panel!.

FIG. 9. The DW solution and the corresponding stability eige
values prior to the onset of the oscillatory instabilities~for C
50.004), and after the onset~for C50.017), in the case ofb
52/3 andL51.
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tion branches generated by pattern~9! with V151 andV2

50 ~also withb52/3). Thus, discrete DW solutions of th
type may exist in the weak-XPM case, unlike the continu
limit, but they are stable only at very small values of t
coupling constant. These conclusions, concerning the e
tence and~in!stability of the DW patterns for the weak-XPM
case, are corroborated by direct simulations; however,
instability is extremely slow, therefore it is not shown he
In the regime of weak XPM, another type of DW solutions
suggested by analogy to the findings of Ref.@3# for the con-
tinuum version of the model. This type of solution exis
only for the weak-XPM case (b,1) in the continuum
model, and, quite naturally, turns out to be primarily releva
in the same case in the discrete model. In the continu
limit, this solution is

FIG. 10. The upper part of the figure shows the discrete co
terpart of the continuum-model solutions~13! for C50.034 ~top
panel! andC53 ~bottom panel!. The stability eigenvalues for both
configurations are shown in the respective right subplots. The lo
part of the figure shows theL2 norm of the two branches~the solid
and dashed lines correspond to the norms of the fieldsun andvn ,
respectively!, and the imaginary part of the most unstable eige
value vsC.
03661
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u~x!5AL cos~x!, v~x!5AL sin~x!, ~13!

whereL is the same as in Eqs.~3! and ~4!, and, in the first
approximation~which corresponds to a broad DW!,

x~x!5
p

4
2tan21@exp~2sAeLx!#, e[12b. ~14!

The corresponding AC limit of such solutions is~for L
51)

un5~1/A2, . . . ,1/A2,1/A2, . . . ,1/A2!,

vn5~21/A2, . . . ,21/A2,1/A2, . . . ,1/A2!. ~15!

Starting from Eq.~15!, the solution was extended all the wa
from C50 to the continuum limit, which shows that th
solution exists for all values ofC. The upper panel of Fig. 10
shows two examples of this solution, forC50.034 andC
53. The lower panel of the figure clearly shows that this D
state is unstable at all values ofC, but gets stabilized in the
continuum limit,C→`. For instance, forC53 the growth
rate of the relevant instability is already extremely sma
;1026, hence this state may seem a practically stable on
the discrete case too, provided that the coupling constan
large enough.

These predictions for the DW patterns generated by
satz~15! were verified in direct simulations of the full non
linear system withb52/3. Figure 11 shows the developme
of the relatively strong instability in the caseC50.1. A re-
markable result, which makes this case drastically differ
from those considered above, is that the instability tra
forms the quiescent DW into a moving one, which is acco
panied by emission of quasi-linear-lattice waves. It has a
been verified that, in full accordance with the prediction
the linear-stability analysis, the formally unstable DWs
the present type seems to be virtually stable ones. A typ

-

er

-

FIG. 11. The~norm contour plot of the! development of the
instability of the DW solution generated by ansatz~13! in the AC
limit in the weak-XPM case,b52/3, andC50.1, L51. The in-
stability is initiated by adding noise with an initial amplitude 1024.
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example of that is displayed in Fig. 12.
Even though the continuum-limit analytical expressio

~13! and~14! for these solutions are only valid forb,1, one
can seek for similar solutions in the discrete strong-XP
system, withb52. The same way as solutions of type~9!
can exist in the discrete system withb52/3, despite the fac
that they do not exist in the continuum limit for the wea
XPM case~see above!, the solutions of type~13! and ~14!
have a chance to exist in the discrete strong-XPM model.
have found that such solutions indeed exist for very sm
values ofC, but they exhibit very strong instabilities, with

FIG. 12. The instability of the DW solution generated by ans
~13! in the AC limit in the weak-XPM case,b52/3, andC51, L
51. The instability is initiated by adding noise with an initial am
plitude 1024. The upper panels show the evolution of the fieldsuunu
and uvnu, while the lower ones show the evolution of the fields
the sitesn550 and n551, by means of the solid and dashe
curves, respectively. As it is obvious from the lower panels,
growth of the instability is extremely slow.

FIG. 13. The solution of type~13! and ~14! is shown forb
52/3 andC50.2 in the top panel, along with the eigenfrequenc
of the linearization. For comparison, the bottom panel shows a
lution of the same type forb52, C50.12. Notice the continuous
spectrum-induced instabilities in the latter case.
03661
s

e
ll

part of the imaginary eigenvalue axis being populated by
continuous spectrum. In Fig. 13, a solution of this type
b52 andC50.12 is compared with a ‘‘natural’’ one exist
ing at b52/3 andC50.2.

The nonlinear evolution of this strong instability was d
rectly simulated, showing a quick transition to a state
‘‘lattice turbulence,’’ see Fig. 14. Thus, the lattice admits t
existence of the ‘‘unnatural’’ solutions in both strong- an
weak-XPM cases, but it never allows them to persistad in-
finitum.

V. CONCLUSIONS

In this work we have studied, by means of numeric
methods, the structure and stability of domain-wall~DW!
solutions in the system of two discrete nonlinear Schro¨dinger
equations with the coupling of the cross-phase modula
~XPM! type. The consideration of this problem is sugges
by the analogy with known DW solutions in a standa
model of a nonlinear optical fiber carrying two polarizatio
of light or two different wavelengths, as well as in the qua
one-dimensional binary Bose-Einstein condensate~BEC!.
The results directly apply to an array of fibers of this typ
with the anomalous intrinsic diffraction controlled by the d
rection of the light beam, or to a string of BEC drops trapp
in an optical-lattice potential; in the latter case, the gene
case with the positive scattering lengths is that which m
give rise to DW patterns.

Using Newton-type methods and continuation from va
ous initial patterns, starting from the anticontinuum~AC!
limit, we have found a number of different stationary sol
tions of the DW type~while the continuum model admits
single type of the DW solution!. Different stability scenarios
and transitions to instability were identified for these so

z

t

e

s
o-

FIG. 14. The instability of the DW solution generated by ans
~13! in the AC limit in the strong-XPM case,b52, andC50.1,
L51. The instability is initiated by adding noise with an initia
amplitude 1024, leading very rapidly to lattice turbulence. The pa
els show the time evolution of the~contours of the squares of the!
fields uunu and uvnu.
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tions. In the case of strong-XPM coupling, corresponding
two circular polarizations or two different wavelengths in t
optical-waveguide array, natural DW configurations cont
only one polarization at each end of the chain. The m
fundamental solution of this type, generated by the simp
AC pattern, has been found to be always stable. Ano
solution, generated by the AC pattern that includes a ve
rial state in the central site of the lattice, generates a beha
that is unusual for nonlinear dynamical lattices: it is unsta
for small values of the coupling constantC ~which is the
ratio of the nonlinear propagation length to the coupli
length in the waveguide array!, acquiring stability and re-
maining stable at larger values ofC. Stable bound state
formed by stable DWs were also found. A number of D
configurations generated by more sophisticated AC patt
were obtained, but they were either found to be comple
unstable, or to be stable only at very small values ofC.

In the case of weak XPM, which corresponds to line
polarizations in optics, the solutions become staggered
are subject to oscillatory instabilities. In this case, a m
natural DW solution is that with a combination of both p
larizations, with the phase difference between them bein
and p at the opposite ends of the lattice. This solution
unstable at all values ofC, but the instability is very weak for
large values ofC, corresponding to stabilization in the con
tinuum limit.

The robustness of all the patterns that were predicted t
y,

:
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nd

n-

nd
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stable in direct simulations was corroborated in direct sim
lations of the full nonlinear system. The evolution of u
stable patterns was simulated too. In some cases, this in
bility is extremely weak; in other cases, a stronger instabi
leads to rapid rearrangement of the unstable DW into a st
one, including the possibility of generation of a moving D
in the weak-XPM model; a very strong instability may ev
induce ‘‘lattice turbulence.’’

Estimates of physical parameters necessary for the for
tion of DWs in the optical-waveguide array and BEC stri
were given too. In particular, discrete optical DWs are e
pected to be found in the same region of parameters wh
bright discrete solitons have been already observed.

The consideration of DW patterns in dynamical lattic
can be continued in several directions. A topic of direct
terest concerns the mobility of DWs across the lattice. No
in particular, that a mechanical twist applied to an optic
fiber may give rise to a driving force acting on DWs in it@3#,
which can support the motion. On the other hand, a w
symmetry-breaking deformation of the waveguides will i
duce linear mixing between the two orthogonal polarizatio
which will drastically affect the DWs. Another interestin
problem is the interaction between DWs~in Ref. @3#, it was
shown that a bound state of two DWs with opposite pola
ties is possible in a nonlinear optical fiber in the presence
the twist!. These issues will be considered elsewhere.
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