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Domain walls in two-component dynamical lattices
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We introduce domain-wallDW) states in the bimodal discrete nonlinear Sclimger equation, in which the
modes are coupled by cross-phase modulat®dBM). The results apply to an array of nonlinear optical
waveguides carrying two different polarizations of light, or two different wavelengths, with anomalous intrin-
sic diffraction controlled by direction of the light beam, and to a string of drops of a binary Bose-Einstein
condensate, trapped in an optical lattice. By means of continuation from various initial patterns taken in the
anticontinuum(AC) limit, we find a number of different solutions of the DW type, for which different stability
scenarios are identified. In the case of strong-XPM coupling, DW configurations contain a single mode at each
end of the chain. The most fundamental solution of this type is found to be always stable. Another solution,
which is generated by a different AC pattern, demonstrates behavior which is unusual for nonlinear dynamical
lattices: it is unstable for small values of the coupling constatwhich measures the ratio of the nonlinearity
and coupling lengths and becomes stable at largér Stable bound states of DWs are also found. DW
configurations generated by more sophisticated AC patterns are identified as well, but they are either com-
pletely unstable, or are stable only at small value€.di the case of weak XPM, a natural DW solution is the
one which contains a combination of both polarizations, with the phase difference between them atahd
opposite ends of the lattice. This solution is unstable at all valu€s bfit the instability is very weak for large
C, indicating stabilization as the continuum limit is approached. The stability of DWs is also verified by direct
simulations, and the evolution of unstable DWs is simulated too; in particular, it is found that, in the weak-
XPM system, the instability may give rise to a moving DW. The DW states can be observed experimentally in
the same parameter range where discrete solitons have been found in the lattice setting.
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I. INTRODUCTION ject to MI even in the case of normal GV[]. Loosely,
DWs are related to the MI of the two-component uniform
Nonlinear optica| fibers and Wa\/eguides and arrays comstate the same way as the usual bright soliton is related to Ml
posed of them furnish a unique example of a medium irPf the single-component field in the case of anomalous GVD
which various solitary-wave patterns and their complexe§4]'

can be easily observed in a real experiment, and describedIi(;rsh?Oszrr?Zl?goim?i%?ﬁz’rggfseﬁtgig geé?gn?elr?a\“;ﬁél a
with a very high accuracy, by relatively simple models, aP 9 phy y . Y

benchmark example being the nonlinear Sdinger equa- string of drops of a binarytwo-component Bose-Einstein
tion [1]. Besides commonly known bright and dark solitons condensatéBEC) trapped at minima of a periodic potential,

i i the f £ : Y 'which can be readily induced by an optical interference pat-
solitary-wave structures in the form of domain walBWS)  torn [7]. In this connection, it is relevant to mention that

were also predicted in a fiber with normal group-velocity siaple DW configurations have been predicted in a continu-
dispersion(GVD) which carries two different waves with g quasi-one-dimensionéaligar-shapedbinary BEC[8].
Orthogonal pOlarizationS, circular or Iinear, that interact Opt|ca| DWs in nonlinear fibers have been observed in
through the cross-phase modulatiotPM) induced by the  direct experiments9], including high-repetition periodic
Kerr nonlinearity[2,3]. Similar structures can also be ex- DW trains [10]. On the other hand, recent experimental
pected to exist in planar nonlinear optical waveguifi¢s  achievements in the observation of discrete spatial optical
DW patterns are distinguished by the property that, asympsolitons in arrays of waveguides in the spatial domain
totically (at infinity), they contain a single polarization, with [11,12] suggest that observation of DW-like structures in
a switch between two of them in a localized region. In fact,waveguide arrays may be quite feasible too. Additionally,
solutions for the optical DWs were constructed, following solitons of the DW type may be a new species of solitary
the pattern of earlier known solutions of the DW type for awaves in the discrete nonlinear Sctilmger (DNLS) equa-
system of coupled Ginzburg-Landau equations that describiéons, which have recently attracted a great deal of interest
interactions between roll patterns with different orientations(for a recent review see e.g., REL3]). Given that the solu-
in a convection layef5,6]. tions to coupled DNLS equations have been examined for a
GVD in the fiber must be normal in order to prevent the considerable while nowithe first relevant results appeared
modulational instability(Ml) of the DW's uniform back- about 20 years ago ii4]), it appears that DWs may be one
ground fields. Nevertheless, it is known that a uniform two-of the few types of DNLS solitions that have not been stud-
component field, unlike single-component ones, may be subed yet.
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An objective of the present work is to introduce this typebelow (such as a width of DWSs in terms of the number of
of discrete solitons and study their stability by means oflattice site$ suggest that stable DWs in optical-waveguide
precise numerical methods. An exact formulation of thearrays should be observable in the same experimental setups,
model, together with estimates of relevant physical paramand in essentially the same range of the power per wave-
eters, are given in Sec. Il. In Sec. Ill, we study in detail DWsguide, where bright discrete solitons have been found in
in the case of strong XPM, which corresponds to circulanyorks[11,12.
polarizations. We find several different types of DWs, the |5 Eqgs.(1) and(2), the SPM coefficient is normalized to
simplest one being stable for all values of the intersite coupq 1, andg is a relative coefficient of the XPM nonlinear
pling cqnstanC (which is the ratio qf the propggation Ieng'th coupling, which is 2 or 2/3, in the case of linear or circular
determined by the Kerr nonlinearity to the linear-coupling - i ations, respectively. In the latter case, we neglect, as

Ie_ngth, In terms O.f _the optical-waveguide {i_r)aDWs Qf a usual, four-wave-mixing FWM) non-linear-coupling terms
different type exhibit a rather unusual stability behavior, be- . . . .
. . [1]. Strictly speaking, for the short propagation distance
ing unstable at small values @ and stable at largeg, i.e., i .

in weakly and strongly coupled arrays, respectively. The ex£~10 mm), relevant to the recent eXPe”mem]' It may
istence of stable bound states of DWs is also demonstrate§® Necessary to keep the FWM terms in the gase2/3; we
Other types of DWSs turn out to be either completely un-d(_) not consider this issue in the present work becaus_e, as it
stable, or stable only at small values ©f In Sec. IV, we will be shown below, most interesting results are found in the
consider DWs in the model with weak XPM, which corre- caseB=2. We will refer to the two cases witf=2/3 and
sponds to linear polarizations. In this case, DWs are un8=2 as those with the weak- and strong-XPM coupling,
stable. However, the instability growth rate of the simplestrespectively. The valug=2 applies also to the case when
(fundamentgl DW becomes vanishingly small for large val- the two modes refer not to polarizations, but rather to light
ues ofC, so that the pattern becomésarginally stable in  signals carried by different wavelengtg, which is another

the continuum limit,C—~. In all the cases, the predicted plausible realization of the present model in terms of nonlin-
stability of DWs is tested in direct numerical simulations, ear optics.

and in those cases when DWs are expected to be unstable, If the nonlinearity in the waveguides is induced by the
the instability development is simulated too. Section V sum-ysual self-focusing Kerr effect, and the light is launched so

marizes the paper. that its Poynting vector is oriented parallel to the array, the
linear coupling between fiber&iscrete diffraction corre-
Il. FORMULATION OF THE MODEL sponds taC<0 in Egs.(1) and(2). In this case, the system

) ] ] _gives rise to two-component discrete bright solitons, which
~ The model of an array of nonlinear optical fibers carryingyere recently studied in detail, including their generalization
fields ¢(z) and¢,(2), which correspond to two orthogonal g the two-dimensional latticL5]. However, a newly devel-

polarizations of light, has the form oped experimental technique, based on launching an oblique
q beam into the array12], makes it possible to implement
i— -C e =20 — 24 2y anomalousdiscrete diffraction, which corresponds @>0
dZ(l’ljn) (U2t Pin-a=20m) = ([l "+ Bl 6ol in Egs.(1) and(2). In this case, bright solitons do not exist.
) As it was mentioned above, the same system of EDs.

and (2) may also be regarded as a normalized model of a
. string of binary-BEC drops trapped in an optical lattice. In
'd_z(¢ﬂ) =C(ni1t dn-172¢n) = (| bnl*+ Blinl *) én, this case, assuming the usual situation with the positive scat-
(2)  tering length(i.e., repulsion between atom®ne hasC>0,
which is precisely what is necessary to generate DW solu-
wherez is the propagation distance along the fiber and  tions. Unlike the realization in terms of nonlinear optics, the
the index of the lattice site. Equatiofiy and(2) are written  value of the coefficienfs may be arbitrary(but positive.
in a rescaled form, in which the consta@tof the linear The separation between the drops is of the order of the
coupling between adjacent fibers has a straightforward physlattice-generating light wavelength, i.e-,1 um. A promis-
cal meaning: it is a ratio of the characteristic propagationing candidate for the binary condensate is a mixtur&gb
length L ,omin @long the waveguide, determined by the Kerrand 8'Rb, the corresponding positive scattering lengths be-
nonlinearity (self-phase modulation, SPMto the coupling ing ~10 nm[16]. The necessary temperature and densities
length L, determined by the linear interaction betweenof the drops can be estimated as 1010 °K and
adjacent waveguides. In the most typical experimental situat0*'-10'2 cm™3, which can be readily achieved by available
tion, with the power of light beams 5601000 W, the non- experimental techniques.
linearity length in AlGa, _,As waveguidegwhose nonlin- In this work, we examine discrete domain walBWs) in
earity is 500 times stronger than that of fused silica glasssystems(1) and(2), which may be stable only i€>0. We
takes values-1—2 mm, and the coupling length is1 mm  will construct DW solutions, starting from the anticontinuum
[11,12. In fact, Loup may vary in broad limits, as it expo- (AC) limit with C=0 [17], and using the continuation i@
nentially depends on the separation between the to extend the solutions up to bifurcation points where they
waveguides: for instance,,, decreases by a factor of 1.6 lose their stability, or up to the continuum limiC{ )
ash increases from &m to 11 um [11]. Results displayed when possible. Thus, we seek solutions of the form
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FIG. 1. Left panels show examples of the domain-wall solutions
generated, in the cagg=2 andA =1, by the AC pattern withu,
(8) =(0,...,0,1,1...,1) (the dashed line connecting the stars is a
guide to the eyeandv,=(1,...,1,0,Q...,0) (circles connected
(the asterisk stands for the complex conjugati@nd solv- by the solid line. Right panels show the spectral plane; (w;) of

ing the ensuing matrix eigenvalue problem. the corresponding stability eigenfrequencies found from the equa-
tions linearized about the stationary solution, the subscripts stand-

ing for the real and imaginary parts. The absence of eigenfrequen-

cies with a nonzero imaginary part indicates the stability of the

configuration. The top and bottom panels correspond, respectively,
In this section, we consider the model based on Etjs. to C=0.034(weak coupling andC=3.5 (strong coupling

and (2) with 8=2. We start the examination of DW struc-

tures by looking for stationary solutions in a natural formalso been verified by direct numerical simulations of Ed.

do=exp(iAZ)[v,+ ec expiwz) +d,exp —iw*z)]

Ill. NUMERICAL RESULTS FOR THE STRONG-XPM
MODEL

which is taken, in the AC limit, as and(2), with initial conditions containing a small noisy com-
ponent.
u,=(...0,0,0v4,1,1,1 ...), The next case to consider is when
vp=(...1,1,1V,,0,0,0...) 9) Vi=V,= JAI(17B) (11)

[see Eqs(3) and(4)], whereV,; andV, belong to ondcen- ) ) o
tral) site of the lattice and will be defined below. We will, in in EQ. (9). These values imply that, in the AC limit, the
particular, consider the steady states with 1 in Eqs.(3) ~ Ccentral waveguide in the array carries a vectorial state, in
and (4), but the results will be generally true if 1 in the AC yvhlch_bot_h polarities have equal amplitudes. The_ numerl_cal
ansatz(9) is replaced by\/K for an arbitrary positive value investigation reveals an unusual feature of this solution
of A. Notice that in the present study, we fixand varyC branch: it is unstable for small values Gf starting from the
modifying, essentially, in this way the degree of localizationAC_limit (C=0), but becomestableat C=0.61, and re-
or equivalently the peak power. One can instead always redP@ins stable thereafter up @=cc. This property is opposite
cale C to the valueC=1, and equivalently vary the propa- to the common scenario, when a sufficiently strong discrete-
gation constant\ ness is responsibléhrough the effective potential energy
Numerical calé:ulations demonstrate that, £ 2 (which barrier that it creatgdor the stabilization of various solitary-
corresponds to the circular polarizations of light in the fi- Wave lattice patternsfor instance, two-dimensional pulses

bers, the AC pattern(9) with [19] or vortices[20]) that are unstable in the continuum
' limit.
V;=1, V,=0 (10) Solutions generated by E@L1) are shown, for the same

values of3, A, andC as in Fig. 1, in two upper rows of Fig.
(or vice versa generates the most structurally robust and2 (top panel. Notice the presence of an unstatilmaginary
stable solutions. In particular, this solution was found to beeigenvalue pair in the panel pertaining @=0.034. The
stable forall values of the coupling consta, up to the imaginary part of the unstable eigenvalue is displayed, as a
continuum limitC—occ. Examples of such a DW for cases of function of the coupling constant, in the lower panel of Fig.
weak (C=0.034) and strong@=3.5) intersite couplingre- 2, showing the transition from instability to stability &
call C may be realized as the ratib,gpjin/Lcoup iN the  ~0.61.
optical-waveguide arrayare shown in Fig. 1. The complete  The predictions for the stability of these solutions were
stability of DWs belonging to this branch of the solutions hasalso checked against direct simulations of the full equations.
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FIG. 3. Evolution of an unstable DW configuration belonging to
the solution branch generated by AC ansgg and (11) with C
=0.1, B=2, andA =1. To accelerate the onset of the instability, a
noise with an amplitude 10 was added to the initial configuration.

_ The left and right top panels display the evolution of the fig¢ids$
and|u,|, while the bottom panels show the evolution of the fields at
the sitesn=50 (solid curve andn=49 (dashed curvefor u, and
n=50 (solid curve andn=>51 (dashed for v.

Max ()

+o 12
] Pz(_z uﬁ) , (12)

- vs the coupling constar® (note thatP is finite due to the
finiteness of the computational domginrhe dependence
P(C), shown in Fig. 4, is not a completely invariant charac-
teristic, as values oP depend on the size of the domain.
However, the turning-point structure is invariant.

In the lower panel of Fig. 4, the present solution and its
ear-stability eigenvalues are shown for three different val-

FIG. 2. The two top rows show DW solutions and their stability lin

eigenvalues, as generated by AC patténat the same values of - — -~ .
parameters as in Fig. 1, but with, andV, chosen as in Eq11). ues ofC (C=0.06, C=0.11, andC=0.15143 in the top,

The bottom panel shows the imaginary part of the most unstabl iddle, and_ bottom ;ubpl(jtsAs IS Se(.an from this part of the
eigenvalue as a function @ igure, the first solution is stable, while the latter two are not.

The solutions of the present type are stable@er0.0725,

In the case when the DW is predicted to be stable, it isand the spectrum of their linear-stability eigenvalues con-
indeed found to be completely stalffeot shown herg Inthe  tains two continuous bands. AS increases, two pairs of
case when it is expected to be unstable, the simulations shogigenvalues bifurcate from the outer band and move towards
(see Fig. 3 that the unstable DW emits a packet of lattice the inner one. Their first collision with the inner band occurs
phonons and rearranges itself, so that the field in one comat C~0.0725, and the second collision takes placeCat
ponent at one siten=50 in Fig. 3 becomes equal to the ~0.08. Each collision generates an instability-bearing quar-
field in the other component at the adjacent site=f1, in  tet of eigenvalues, manifesting the so-called Hamiltonian
Fig. 3). Comparison with expression®) and (10) clearly = Hopf bifurcation[21]. Subsequentlyfor largerC), the two
suggests that the result of the instability development is theuartets move towards the imaginary eigenvalue axis. Very
rearrangement of the DW into a stable one belonging to thelose to the turning point, the collision of the first quartet
solution branch generated by E4O) in the AC limit. with the axis induces a symmetry breaking, which results in

A solution generated by AC patteld) with V;=V,=0 one pair of eigenvalues moving towards the origin, while
(i.e., with both field components equal to zero at the centrahnother pair moves upwards along the imaginary axis. Fi-
lattice site in the AC limit was also examined. Unlike the nally, after the collapse of the lower imaginary pair onto the
solution branches considered above, this one does not reaohigin of the spectral plane, the turning-point bifurcation oc-
the continuum limit. Instead, it terminates @=0.15143 curs and the branch terminates, as is shown in the upper
through a turning-point bifurcation. This is obvious in Fig. 4, panel of Fig. 4.
which displays thé.? norm of one component of the solution Direct simulations again show that the solutions which are
(the other component behaves similarly stable according to the linearization are indeed stable in full
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FIG. 5. The evolution of a weakly unstable solution generated,

o in the AC limit, by ansat9) with V,=V,=0, for C=0.1, =2,
o A=1. The development of the instability is initiated by adding
g ° C— noise with an initial amplitude I¢°. The meaning of the panels is
B the same as in Fig. 3.
- -1 oo ! 2
001 5 > ~0.17, similarly to what was shown in Fig. 4. Note that this
0.005 turning point is found at a larger value &fthan in Fig. 4.
& o eo————— We continued the analysis, starting with several enfpgyo-
-0.005 field) sites in the center of the pattern @=0, which pro-
001 ® e duced quite a similar picture, an unexpected feature being
-2 -1 [} 1 2 . . . .
0os . < that the value ofC at the turning point increases with the
vor ° ° increase of the number of the initially empty sites.
_ ° Contrary to what was described above for the case of one
€’ — or several empty sites, in the case when the initial pattern has
e o o two sites occupied by vectorial stat#l), the solution be-
oo S 1 2 haves quite differently from its counterpart in the case when
r only one site was initially occupied by the vectorial state. In

FIG. 4. The upper panel demonstrates the result of continuatiof@Ct, not only does the branch terminate—in this cas«; at
of the branch withv; =V,=0 from the AC limit up to the turning ~0.1085 (the solution found at the turning point and the
point (C~0.15143)—the solid curve—and back—the dashed onecorresponding eigenfrequencies are shown in Fig-Iut it
To this end, theL? norm P [see Eq.(12)] of one componentthe
other behaves similarlyof the solution is shown as a function of 1 ® @ @ T =
the coupling constant. The lower panel shows solutions at three o8l
points along the solid line in the upper panel. In particular, the o

¥

stable solution forC=0.06 (its spatial profile and stabililyis >~= °

shown in the top subplot, and solutions f@~0.11 andC 3 o4r ]
~0.151 42(the latter one being very close to the turning ppare o2} .
displayed in the middle and bottom subplots. N L N .

simulations. An example of direct simulations of the unstable
solution belonging to this branch is given in Fi®). As is
seen, the instability does set in, but its growth is extremely oos} ]
slow. ~
We also considered the situation with the zero-field state ®

occupying, in the AC limit,two (or more lattice sites. The -005| o 1
resulting scenario turns out to be similar to that demonstratec

above for the patterns generated by AC lirt8 with V, 45 = s o 0s i s
=V,=0: the solution is stable at very smdll, then be- !

comes unstable due to the bifurcation of féunstead of two FIG. 6. The solution generated, in the AC limit, by the pattern

in the previou; cas}_epairs Qf eigenyalues from the outer with two sites occupied by vectorial statil) is shown exactly at
band and their collision with the inner bardot shown  the turning point ofC~0.1085, along with its stability eigenvalues.
here. Finally, the branch terminates at a turning poiniCat  This solution branch is always unstable, as discussed in the text.
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FIG. 7. The evolution of an unstable solution generated, in the
AC limit, by ansatz(9) with two sites occupied by vectorial state FIG. 8. An example of a stable complex consisting of three
(11), for C=0.1, =2, A=1. The development of the instability is  domain walls forC=0.15. Shown are the solution’s spatial profile

initiated by adding noise with an initial amplitude 10 The mean- (top panel and stability eigenvaluedn the bottom pangl
ing of the panels is the same as in Fig. 3, the bottom ones showing

(absolute value ofthe field evolution at the points=48 (dash- <1( LN . _ .

) - . - o il weak-XPM coupling, including the cas@= 2/3, which
dotted I'ne$’ n=49 (dashed lines n=50 (SOI'd.“neS’ andn_sl is specially relevant for the applications to nonlinear optics.
(dotted line$ for u (bottom lef) andv (bottom righ} as a function However, in this case properties of the DW solutions are
of time t. ST .

drastically different from those described above fo¢ 2.

. For B=2/3, all solutions of the DW type were observed
IS aI_so found to bealwgy_s unstablefor every va_Iue qu to becomestaggeredvhen continued from the AC limit.e.,
starting Ifrom the 'f‘l‘_ﬁ “lr)n'tCTqO’ there are t\r/]vo |mag|n?r3r/1 the phase difference between the fields at adjacent sites of
eigenva lrJ]e palr:S.h e branch terminates when one of thefq |atice tends to be, rather than 0). As a result, the outer
passes through t e ongin.. . continuous band of the stability eigenvalues has the Krein

An ex"’?mp'e Of. directly s!mulgted evolupon of an uns.tablesignature[ZZ] opposite to that of the inner band, and as soon
DW of this type is s_hown n '.:'g' 7. In this case, the NSta- 55’ the bands collidevhich happens a&€~0.011, i.e., still in
bility d_evel_opment is essentially faster than in the Cas&pa case of very weak couplingiumerous quartets of com-
shown in Fig. 3, and, as a result, a stable DW appears. lex eigenvalues arise. An example, corresponding to the

Furthermore, stable DW solutions found above, such a ; ; -
’ . ) ' olution generated by AC pattei®) with the central site
those generated by AC-limit patte(®) with V, andV, cho- occupied by the vectorial statdl) (with g=2/3) is dis-

sen as per Eqs(10) or (11), can form stable complexes PR o ; )
(higher-order DW Obviously, the complex must contain an played in Fig. 9. Similar results were obtained for the solu
odd number of fundamental DWs. An example is shown in ' o R .
Fig. 8 for C=0.15. Direct simulations confirm that these o ‘
complexes are completely stable. Recall that, if the underly- i O‘S 05

ing system of Eqs(1) and(2) is applied to the string of BEC >’
drops, the value of3, which is determined by the values of =°

04

the cross-scattering length, is arbitrary. In the cas@®fl, 02 -05
the results are quite similar to those described in detail above O Hx 1k 4 4 1
for B=2. For B<1, the results are very different, as is de- 0 4 s 58 04 02 0 0z 04

scribed in the following section.

56
Qe

08

IV. THE WEAK-XPM MODEL 06 ! ° °
>: . ,I _ 2 o] [¢] 2
The underlying patterii9), used to construct all the DW _= 4 ! M - o 00
states considered above, was suggested by solutions four oz | 05 %é) ]
(in the temporal, rather than spatial, domain the con- [ R . S %
tinuum model of the single nonlinear optical fibe,4] or R Da o2 S oz o4
r

cigar-shaped BE(8]. Solutions of this type in the con-
tinuum model exist only in the case of sufficiently strong  FiG. 9. The DW solution and the corresponding stability eigen-

XPM, namely, for>1. _ _ values prior to the onset of the oscillatory instabilitiéer C
Unlike the continuum model, in the discrete systeftis =0.004), and after the onséfor C=0.017), in the case of3
and (2), DW patterns of typg9) can also be found fop =2/3 andA=1.
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FIG. 11. The(norm contour plot of thedevelopment of the

instability of the DW solution generated by ans&i8) in the AC
7.8f ] limit in the weak-XPM caseB=2/3, andC=0.1, A=1. The in-

- stability is initiated by adding noise with an initial amplitude 10

a7s “»-§_‘____—— 1
T u(x)=vAcogy), v(x)=vVAsiny), (13
72 05 1 1!(;: 2 25 s whereA is the same as in Eq§3) and (4), and, in the first

approximation(which corresponds to a broad DW
02 Y

7T
_ossf x(x)= Z—tan‘l[ex;i—s\/e/\x)], e=1-8. (19
o
~— 0.1
‘g The corresponding AC limit of such solutions ([®r A
0.05f — 1)
0
o 05 i " 2 25 3 u,= (N2, ... N2 AN2, ... 1A2),
FIG. 10. The upper part of the figure shows the discrete coun- v=(— 1/\/51 R 1/\/5,1/\/5, o ,1/\/5)_ (15)

terpart of the continuum-model solutiori$3) for C=0.034 (top

pane) andC= 3 (bottom panel The stability eigenvalues for both Starting from Eq(15), the solution was extended all the way
configurations are shown in the respective right subplots. The lowefrom C=0 to the continuum limit, which shows that the
part of the figure shows thie” norm of the two branchehe solid 5| tion exists for all values . The upper panel of Fig. 10
‘:‘en: g;?\?(:g '::; tchcgrﬁzgoir:gto tgitn;”t?]se Or‘;g: Eﬁﬁzﬁ: 1 o SOWS two examples of this solution, f@=0.034 andC
vaILF:e vsC ' ginary p gen-_g, T_he lower panel of the figure clearly shows that this DW
’ state is unstable at all values Gf but gets stabilized in the
continuum limit, C—o. For instance, folC=3 the growth
tion branches generated by patté®) with V;=1 andV, rate of the relevant instability is already extremely small,
=0 (also with 3=2/3). Thus, discrete DW solutions of this ~10"®, hence this state may seem a practically stable one in
type may exist in the weak-XPM case, unlike the continuumthe discrete case too, provided that the coupling constant is
limit, but they are stable only at very small values of thelarge enough.
coupling constant. These conclusions, concerning the exis- These predictions for the DW patterns generated by an-
tence andin)stability of the DW patterns for the weak-XPM satz(15) were verified in direct simulations of the full non-
case, are corroborated by direct simulations; however, thénear system with3=2/3. Figure 11 shows the development
instability is extremely slow, therefore it is not shown here.of the relatively strong instability in the cas&=0.1. A re-
In the regime of weak XPM, another type of DW solutions is markable result, which makes this case drastically different
suggested by analogy to the findings of H&. for the con-  from those considered above, is that the instability trans-
tinuum version of the model. This type of solution existsforms the quiescent DW into a moving one, which is accom-
only for the weak-XPM case <1) in the continuum panied by emission of quasi-linear-lattice waves. It has also
model, and, quite naturally, turns out to be primarily relevantbeen verified that, in full accordance with the prediction of
in the same case in the discrete model. In the continuurthe linear-stability analysis, the formally unstable DWs of
limit, this solution is the present type seems to be virtually stable ones. A typical
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FIG. 12. The instability of the DW solution generated by ansatz V10
(13) in the AC limit in the weak-XPM caseg=2/3, andC=1, A FIG. 14. The instability of the DW solution generated by ansatz
=1. The instability is initiated by adding noise with an initial am- (13) in the AC limit in the strong-XPM case=2, andC=0.1,
plitude 10°*. The upper panels show the evolution of the figlsl$ A =1. The instability is initiated by adding noise with an initial
and|v,|, while the lower ones show the evolution of the fields at amplitude 104, leading very rapidly to lattice turbulence. The pan-
the sitesn=50 andn=51, by means of the solid and dashed g|s show the time evolution of thgontours of the squares of the
curves, respectively. As it is obvious from the lower panels, thefieids |u,| and|v,,|.
growth of the instability is extremely slow.

example of that is displayed in Fig. 12. part of the imaginary eigenvalue axis being populated by the
Even though the continuum-limit analytical expressionsContinuous spectrum. In Fig. 13, a solution of this type for
(13) and(14) for these solutions are only valid fgr<1, one B=2 andC=0.12 is compared with a “natural” one exist-
can seek for similar solutions in the discrete strong-xPMing at=2/3 andC=0.2. _ _ N _
system, withB=2. The same way as solutions of ty(® The nonlinear evolution of this strong instability was di-

can exist in the discrete system wigh=2/3, despite the fact rectly simulated, showing a quick transition to a state of
that they do not exist in the continuum limit for the weak- “lattice turbulence,” see Fig. 14. Thus, the lattice admits the

XPM case(see above the solutions of typg13) and (14)  existence of the “unnatural” solutions in both strong- and
have a chance to exist in the discrete strong-XPM model. wi/€ak-XPM cases, but it never allows them to peraitn-
have found that such solutions indeed exist for very smalfinitum

values ofC, but they exhibit very strong instabilities, with a

V. CONCLUSIONS

1 0.15 Y]
_ eeeemef%ﬁ* cs006s
05 . ot; In this work we have studied, by means of numerical
> ! o methods, the structure and stability of domain-w@\w)
=’ ! s o e— solutions in the system of two discrete nonlinear $dhrger
05 * oo equations with the coupling of the cross-phase modulation
Froreennnr? o (XPM) type. The consideration of this problem is suggested
o s s s s % 4 o 1 2 by the analogy with known DW solutions in a standard
n r model of a nonlinear optical fiber carrying two polarizations

of light or two different wavelengths, as well as in the quasi-
one-dimensional binary Bose-Einstein condensd&&C).
The results directly apply to an array of fibers of this type,
with the anomalous intrinsic diffraction controlled by the di-
rection of the light beam, or to a string of BEC drops trapped
in an optical-lattice potential; in the latter case, the generic
case with the positive scattering lengths is that which may
give rise to DW patterns.

Using Newton-type methods and continuation from vari-

FIG. 13. The solution of typdl3) and (14) is shown forg  OUS initial patterns, starting from the anticontinuu#C)
=2/3 andC=0.2 in the top panel, along with the eigenfrequencieslimit, we have found a number of different stationary solu-
of the linearization. For comparison, the bottom panel shows a sdtions of the DW type(while the continuum model admits a
lution of the same type foB8=2, C=0.12. Notice the continuous- Ssingle type of the DW solutign Different stability scenarios
spectrum-induced instabilities in the latter case. and transitions to instability were identified for these solu-

036614-8



DOMAIN WALLS IN TWO-COMPONENT DYNAMICAL LATTICES PHYSICAL REVIEW E 67, 036614 (2003

tions. In the case of strong-XPM coupling, corresponding tostable in direct simulations was corroborated in direct simu-
two circular polarizations or two different wavelengths in thelations of the full nonlinear system. The evolution of un-
optical-waveguide array, natural DW configurations containstable patterns was simulated too. In some cases, this insta-
only one polarization at each end of the chain. The mosbility is extremely weak; in other cases, a stronger instability
fundamental solution of this type, generated by the simplesiads to rapid rearrangement of the unstable DW into a stable
AC pattern, has been found to be always stable. Anothepne including the possibility of generation of a moving DW
solution, generated by the AC pattern that includes a vectan the weak-XPM model; a very strong instability may even
rial state in the central site of the lattice, generates a behavighqyce “lattice turbulence.”

that is unusual for nonlinear dynamical Iattices:' it ig unstable  Eqtimates of physical parameters necessary for the forma-
for small values of the coupling constat (which is the — y,n of pws in the optical-waveguide array and BEC string
ratio of the nonlinear propagation length to the COUpIIngwere given too. In particular, discrete optical DWs are ex-

Iength in the waveguide arrayacquiring stability and re- pected to be found in the same region of parameters where
maining stable at larger values &. Stable bound states | - . .
bright discrete solitons have been already observed.

formed by stable DWs were also found. A number of DW Th nsideration of DW patterns in dvnamical latt
configurations generated by more sophisticated AC patterns € consideration o patterns ynamical atlices

were obtained, but they were either found to be completelfa" be continued in sevgral directions. A topic of Qirect in-
unstable, or to be stable only at very small value€of fterest concerns the mobility Qf DW§ across the lattice. N.ote,
In the case of weak XPM, which corresponds to linearin particular, that a mechanical twist applied to an opfical
polarizations in optics, the solutions become staggered anfPer may give rise to a driving force acting on DWs i34,
are subject to oscillatory instabilities. In this case, a moraVhich can support the motion. On the other hand, a weak
natural DW solution is that with a combination of both po- Symmetry-breaking deformation of the waveguides will in-
larizations, with the phase difference between them being @luce linear mixing between the two orthogonal polarizations,
and 7 at the opposite ends of the lattice. This solution iswhich will drastically affect the DWs. Another interesting
unstable at all values @, but the instability is very weak for problem is the interaction between DWa Ref.[3], it was
large values ofC, corresponding to stabilization in the con- shown that a bound state of two DWs with opposite polari-
tinuum limit. ties is possible in a nonlinear optical fiber in the presence of
The robustness of all the patterns that were predicted to bée twis). These issues will be considered elsewhere.
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